Early Postnatal Caloric Restriction Protects Adult Male Intrauterine Growth–Restricted Offspring From Obesity

نویسندگان

  • Meena Garg
  • Manikkavasagar Thamotharan
  • Yun Dai
  • Shanthie Thamotharan
  • Bo-Chul Shin
  • David Stout
  • Sherin U. Devaskar
چکیده

Postnatal ad libitum caloric intake superimposed on intrauterine growth restriction (IUGR) is associated with adult-onset obesity, insulin resistance, and type 2 diabetes mellitus (T2DM). We hypothesized that this paradigm of prenatal nutrient deprivation-induced programming can be reversed with the introduction of early postnatal calorie restriction. Ten-month-old male rats exposed to either prenatal nutrient restriction with ad libitum postnatal intake (IUGR), pre- and postnatal nutrient restriction (IPGR), or postnatal nutrient restriction limited to the suckling phase (50% from postnatal [PN]1 to PN21) (PNGR) were compared with age-matched controls (CON). Visceral adiposity, metabolic profile, and insulin sensitivity by hyperinsulinemic-euglycemic clamps were examined. The 10-month-old male IUGR group had a 1.5- to 2.0-fold increase in subcutaneous and visceral fat (P < 0.0002) while remaining euglycemic, insulin sensitive, inactive, and exhibiting metabolic inflexibility (Vo(2)) versus CON. The IPGR group remained lean, euglycemic, insulin sensitive, and active while maintaining metabolic flexibility. The PNGR group was insulin sensitive, similar to IPGR, but less active while maintaining metabolic flexibility. We conclude that IUGR resulted in obesity without insulin resistance and energy metabolic perturbations prior to development of glucose intolerance and T2DM. Postnatal nutrient restriction superimposed on IUGR was protective, restoring metabolic normalcy to a lean and active phenotype.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superimposition of postnatal calorie restriction protects the aging male intrauterine growth- restricted offspring from metabolic maladaptations.

Intrauterine growth restriction (IUGR) results in dysregulated glucose homeostasis and adiposity in the adult. We hypothesized that with aging, these perturbations will wane, and superimposition of postnatal growth restriction (PNGR) on IUGR [intrauterine and postnatal growth restriction (IPGR)] will reverse the residual IUGR phenotype. We therefore undertook hyperinsulinemic-euglycemic clamp, ...

متن کامل

Postnatal oxytocin alleviates adverse effects in adult rat offspring caused by maternal malnutrition.

Repeated oxytocin administration to adult rats causes a long-term decrease of plasma levels of corticosterone and blood pressure and stimulates growth and fat retention. Maternal undernutrition increases blood pressure and plasma corticosterone in adult offspring. We hypothesized that oxytocin treatment early in life would alleviate adverse effects of intrauterine food restriction. Male pups fr...

متن کامل

Estrogen protects against increased blood pressure in postpubertal female growth restricted offspring.

Placental insufficiency in the rat results in intrauterine growth restriction and development of hypertension in prepubertal male and female growth-restricted offspring. However, after puberty, only male growth-restricted offspring remain hypertensive, whereas female growth-restricted offspring stabilize their blood pressure to levels comparable to adult female controls. Because female rats rea...

متن کامل

Early postnatal overfeeding induces early chronic renal dysfunction in adult male rats.

Low birth weight is associated with an increased risk of hypertension and renal dysfunction at adulthood. Such an association has been shown to involve a reduction of nephron endowment and to be enhanced by accelerated postnatal growth in humans. However, while low-birth-weight infants often undergo catch-up growth, little is known about the long-term vascular and renal effects of accelerated p...

متن کامل

Comparison of two models of intrauterine growth restriction for early catch-up growth and later development of glucose intolerance and obesity in rats.

Two models of intrauterine growth restriction, maternal food restriction (FR), and dexamethasone (DEX) exposure were compared for early postnatal catch-up growth and later development of glucose intolerance and obesity in Sprague-Dawley rats. Mated dams were randomly divided into three groups at 10 days gestational age. Group FR was food restricted (50% of nongestating rats) during the last 11 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2012